Music Engineering Independent Project
May 6, 2025
Final Report

“Beats Hero” Rhythm Game
By Drew Cohen

l. Overview

For this project, | set out to recreate a type of “guitar hero” video game inspired
by Tufts BEATSs, a street drumming club on campus. The game involves a modified
Home Depot bucket with two sensor areas corresponding to the main hits of the
instrument, an on-bucket computer to process sensor data, and the game program

coded in Godot that runs either off-bucket (for better performance) or on a Raspberry Pi.

ll. Mechanical Assembly

The mechanical aspects of this project are relatively simple. The Home Depot
bucket frames the instrument and houses the internal electronics. The top surface was
smoothed with an orbital sander, and a 1/8” EPDM rubber pad was cut and glued over

the surface sensors to improve the playing surface, similar to a practice pad.

=

lll. Sensors and Circuitry

Figure 2: P1075 Square FSR

The sensing for this project utilizes two arrays of FSR banks at the center and

rim of the pad. One 2x2 array of sensors is placed directly underneath the pad,
detecting center hits, while two FSRs fold over the rim and detect rimshots. The output

from these sensors is wired through a voltage divider and the ADC on the on-board

computer

Figure 3: Example sensor under the rubber

IV. Software

The software side of this project involved reading from the sensors, and creating
a game to display the output and challenge the player to match hits with a song. It was
by far the most involved aspect of the project, and went through several phases.
Troubleshooting was such a large part of this process that this section would be
incomplete without noting work that ultimately did not end up in the final game.

A. Godot Development

| chose Godot, a free and open source game engine, to write the game itself. |
had developed games in general programming languages before but never with a
dedicated engine, so enjoyed the challenge of learning a new skill. | began by trying to

emulate the look of Guitar Hero, which looks like this:

| experimented with a 3D track and background image, and spent a few hours

writing a custom shader that made objects more transparent the farther away they were.

&

At this point, | decided to move to a 2D game to save time. As it stands, the

demo Node tree (Godot’s abstraction is based around Nodes and Scenes, which are

basically objects and classes) looks like this:

[] main.tscn - Beats Band (2D)

Scene Omain X &

+ & Filter: name, t:type, g:group £ ¢ File Edit Search

O Main Filter Scripts Q

& Track #% eye_of the_tigert.

O NoteStart % main.gd

I HitZone £ note.gd

[CollisionShape2D_0 %# title_screen.gd
® Sprite2D_0

[CollisionShape2D_1
® Sprite2D_1

X Timer

Y © 0000 06

4) Music
@ video

© 0

main.gd 1
Filter Methods ~ Q

ready
FileSystem orocess
< res://Songs/eye_of_the_tiger.txt hit_detect
Filter Files make_note
load_song_file
W res:/

I builds
e pi@192.168.1.210

s python

B Scenes Contributors.

B Scripts

W Songs
Ji. eye_of the_tigermp3
B eye_of_the_tigerogv
#& eye_of_the_tigertxt

Filter ages
£ mukandagolian_2018.mp3

Output
B textures f

Note objects appear on the Track and move left until they enter the two collision

2D B3D & Script

Go To

Debug

& Game & AssetLib

@ Online Docs
Node2D

PackedScene
poi =0
@export noteSpeed: float = 350.0

time_begin
time_delay|
note_index
note_data
curr_note_tine = 10000

_ready()

time_begin = Time

AudioServer € (O
note_index = 6

time_delay =

note_data = g_f

curr_note_time = note_data[0][] - 1155060 / noteSpeed

(Time.g O - time_begin) / 1066.0

-= time_delay
time = n

(6, time)

U T ("hit_6")
rint("¥s 0 108;" % [int(tine)])

AudioServer.

("res://Songs/eye_of_the_tiger.txt")

Inspector
& Search Help E &
O Main
Filter Properties
main.gd
© @ note.tscn
0.0
350.0
O Node2D
Transform

Position 0.0

0.0

0.0
Canvasltem
Visibility
Ordering
Texture

<

Debugger Audio

Animation

A2

Godot Engine v4.4.1.stable.official (c) 2007-present Juan Linietsky, Ariel Manzur & Godot

Shader Editor

77 % : 15| Tabs | >Material

O Node
Process
Physics Interpolation
Auto Translate
Editor Description
© ¥ maingd

Scrip!

+ AddMetadata

areas in the HitZone. At this point, if the proper hit is registered, the Notes are

considered to be ‘hit’ and disappear. A music video plays in the background (this test

song is Eye of the Tiger):

Beats Band (2D) (DEBUG)

B. Song Storage
Like Guitar Hero, | needed to store songs in the game that users could choose
and attempt to play. However, the only recordings of BEATs songs are live, with no track
or constant BPM. This means the location of the notes must be stored individually in
ms, not as unit time, and had to either be pulled from the recordings themselves or
written manually.
To write songs (or add any new songs to the game), | added a recording mode.
When you play a song in recording mode, it doesn’t send any notes along the track but
plays the .mp4 and records the timing of each user hit to a file. In normal mode, the
game reads from this song file and sends notes along the track as recorded. Songs can
thus be revised by future BEATs members as they see fit.
C. Raspberry Pi Integration
My vision for this project was a seamless plug-and-play, which required a

powerful on-board processor to read notes, process the game, and output to HDMI.

The Raspberry Pi 3b+ has all of this functionality, so was ideal for this project. |
had not used a Raspberry Pi from scratch, so it was exciting to learn how to load the
operating system and set up the SSH. Preemptive research suggested that it would be
difficult, but possible, to run Godot games on its hardware. Godot optimizes game

projects to different operating systems and doesn’t natively support Raspbian, an arm64

Linux distribution, but you can find templates on Github. Then, installing the Vulkan
rendering driver allows any modern Raspberry Pi to run Godot games over HDMI.

The 3b+ input pins can be read over the command line, which Godot can access.
In this way, user input is registered from the sensing circuit as described in the above
sections. Alternatively, the game can be run on a laptop, integrated with user input over

the serial port with an Arduino as is taught in EMID.

IV. Conclusion

Ultimately, | am really excited about the state of this game. | have a working drum
pad on the bucket, a nice Godot foundation, and integration between the two. There’s a
lot of work to continue beautifying the bucket and the game’s Ul, as well as adding a
scoring mechanism and more songs.

Unfortunately, the performance issues with the Raspberry Pi make it almost
unplayable. | am still working on ways to optimize the game so that the plug-and-play
vision can become reality — the hardware is not the issue, as it can stream .mp4 and
surf the web without much stutter. As of now, | have an Arduino setup similar to EMID

with the game reading off the serial port through a python script. It’s a lot of fun!

	“Beats Hero” Rhythm Game
	I. Overview
	II. Mechanical Assembly
	III. Sensors and Circuitry
	
	IV. Software
	
	
	
	
	
	
	At this point, I decided to move to a 2D game to save time. As it stands, the demo Node tree (Godot’s abstraction is based around Nodes and Scenes, which are basically objects and classes) looks like this:
	
	IV. Conclusion

